Functionalized and Partially or Differentially Bridged Resorcin[4]arene Cavitands: Synthesis and Solid-State Structures

by Vladimir A. Azov^a), Philip J. Skinner^a), Yoko Yamakoshi^a), Paul Seiler^a), Volker Gramlich^b), and François Diederich*a)

^a) Laboratorium für Organische Chemie, ETH-Hönggerberg, CH-8093 Zürich (phone: (0)1 632 2992; fax: (0)1 632 11 09; e-mail: diederich@org.chem.ethz.ch) b) Laboratorium für Kristallographie, ETH-Zentrum, Sonneggstrasse 5, CH-8092 Zürich

Dedicated to Professor Duilio Arigoni on the occasion of his 75th birthday

We report the synthesis and structural characterization of modified Cram-type, resorcin^[4]arene-based cavitands. Two main loci on the cavitand backbone were selected for structural modification: the upper part (wall domain) and the lower part (legs). Synthesis of unsymmetrically bridged cavitands with different wall components (i.e., 7, 8, and $14 - 18$) was performed by stepwise bridging of the four couples of neighboring, Hbonded OH-groups of octol 1a (Schemes 1, 2, 4, and 5). Cavitands with modified legs (i.e., 20, 24, 27, and 28), targeted for surface immobilization, were synthesized by short routes starting from suitable aldehyde starting materials incorporating either the fully preformed leg moieties or functional precursors to the final legs (Schemes $7 - 10$). The new cavitand substitution patterns described in this paper should enable the construction of a wide variety of functional architectures in the future. X-Ray crystallography afforded the characterization of cavitands 2c (Fig. 3) and 24 (Fig. 7) in the vase conformation, with 2c featuring a well-ordered CH₂Cl₂ guest molecule in its cavity. A particular highlight is the X-ray crystal-structure determination of octanitro derivative 19 (Scheme 6), which, for the first time, shows a cavitand, lacking substituents in the *ortho-position* to the two Oatoms of the four resorcinol moieties, in the kite-conformation (Fig. 5).

1. Introduction. $-$ One of the most fascinating classes of receptors for chemical molecular-recognition studies comprises the resorcin[4]arene cavitands initially introduced and studied by *Cram* and co-workers $[1]$ (*Fig. 1*). A particularly interesting property of these systems is the reversible switching between a closed vase conformation with a deep cavity for guest encapsulation [2] (for supramolecular

 $R = C₆H₁₃$

Fig. 1. Original resorcin[4]arene cavitand reported by Cram and co-workers [1]

capsules formed by resorcinarene cavitands, see [3]) and an open kite conformation with a flat, extended surface. This vase \rightleftharpoons kite equilibrium is controllable by both temperature $[1]$ or pH variation $[4]$, and resembles the movement of a molecular gripper. We became interested in exploring the potential of these switchable resorcin[4]arenes for single-molecule molecular manipulation (for a first scanning/ tunnelling microscopy (STM) study, imaging the vase conformation at molecular resolution, see [5]). Integrated into suitable devices such as scanning-probemicroscopy tips, these cavitands should be able to capture (by complexation) a single molecule in the vase form and hold it during translocation, while releasing it upon switching to the nonbonding *kite* conformation. To reach this objective, much diverse groundwork is required. Here, we describe the synthesis of switchable resorcin[4]arene-derived cavitands bearing legs at the lower rim for attachment to solid surfaces [5]. Partial and unsymmetrical bridging of the resorcin[4]arene bowl (for a review on resorcin[4]arenes, see [6]) greatly expands the range of dynamic cavitands. A series of derivatives bearing fluorescent 'borondipyrromethene'(BODIPY) dyes [7] attached to the upper rim of the cavitand walls were prepared for mechanistic investigations of the switching dynamics by polarization-resolved single-molecule microscopy [8] (for a preliminary report on parts of this work, see [9]). The solid-state structures of cavitands in both vase and kite conformations are also described. In a following paper [10], we will report comprehensive investigations defining the experimental conditions under which the *vase* \rightleftharpoons *kite* equilibrium of fully and partially bridged resorcin^[4]arenes can be precisely addressed and studied by ¹H-NMR and optical spectroscopy.

2. Results and Discussion. $- 2.1$. *Modification of the Cavity Walls.* A variety of modifications of the cavity walls to tune the size and the inner properties of the cavitands have been reported by Rebek and co-workers [3] [11]. Whereas most of their work involved the 'symmetric'replacement of all four quinoxaline moieties (Fig. 1) by four new, identical wall components, some 'unsymmetric'systems with one flap differing from the residual three have also been reported [3c,e] [12]. For our planned mechanistic studies of the *vase-kite* switching process by means of single-molecule confocal fluorescence microscopy in collaboration with B. Hecht (University of Basel), we were interested in preparing cavitands with one or two diazaphthalimide wall flaps bearing fluorescent BODIPY dyes. Deep cavitands with the latter array of wall components had not been previously described.

On the way to the targeted cavitands, three octols $1a - 1c$ with different, solubilityproviding alkyl legs were prepared from resorcinol and the appropriate aliphatic aldehydes according to a standard protocol [13] (Scheme 1). X-Ray-quality crystals of a solvate of the isobutyl-legged octol 1c with two MeOH and one EtOH molecules were obtained by slow cooling of a MeOH/EtOH $4:1$ solution (*Fig. 2*; for previous X-ray crystal structures of differently legged octols, see [14]). It was actually possible to grow large transparent highly solvated rhombic crystals up to several millimeters in size, they readily lost solvent upon exposure to air and disintegrated. The bowl-shaped conformation of the octol is stabilized by very short $(2.64 - 2.77 \text{ Å})$ intramolecular O-H \cdots O H-bonds (*Fig. 2,a*). Each macrocycle forms a network of intermolecular $O-H \cdots O$ H-bonds to a neighboring octol and to the solvent molecules included in the crystal $(Fig. 2,b)$.

Scheme 1. Synthesis of Resorcin $[4]$ arenes 2-5

a) Conc. HCl, EtOH, 90° , 14 h. b) 2,3-Dichloroquinoxaline (3 equiv.), K₂CO₃, Me₂SO, 20[°] (8 h), then 50[°] $(18 h); 28\% (2a), 35\% (3a)$. c) 2,3-Dichloroquinoxaline (2 equiv.), K₂CO₃, Me₂SO, 20[°] (18 h), then 50[°] (6 h); 2.7% (2a), 16.6% (3a), 3.2% (4a), 19.6% (5a).

The partial bridging of octol 1a with 3equiv. of 2,3-dichloroquinoxaline was subsequently investigated and found to be quite sensitive to the applied experimental conditions. All reactions in DMF with K_2CO_3 , Cs_2CO_3 , or Et₃N as a base were unsuccessful. They afforded only the fully bridged cavitand 2a together with some tarry product; additionally, the reaction in the presence of $Et₃N$ was very slow. In Me₂SO [2b] [15], triply bridged 3a was obtained in 30–35% yield with K_2CO_3 as base; with $Cs₂CO₃$, only fully bridged 2a was formed. Starting from octols 1b and 1c, lower yields of the triply bridged derivatives 3b and 3c, respectively, were obtained besides fully bridged 2b,c; therefore, octol 1a was selected for all future bridging experiments.

Crystals of pentyl-legged 2b as solvate with one CH_2Cl_2 and two MeCN molecules were obtained by slow evaporation from $MeCN/CH_2Cl_2$. The X-ray crystal structure shows the cavitand in the vase conformation (Fig. 3, a) with a C_2 axis passing through the cavity (Fig. 3, b). The CH₂Cl₂ molecule is positioned deeply within the cavity at the level of the quinoxaline N-atoms. Each Cl-atom is located above the centers of two adjacent pyrazine rings, with atom-to-ring-center distances of $3.7 - 3.8 \text{ Å}$. The disordered MeCN molecules are located one atop the cavity and the second one in the space between the four pentyl legs. In the crystal lattice, the cavitand molecules stack in a head-to-tail arrangement, forming infinite, alternating antiparallel columns (see Fig. 6 below).

Fig. 2. a) X-Ray crystal structure of the solvated octol 1c with two MeOH and one EtOH molecules (not shown). Arbitrary numbering. Atomic displacement parameters obtained at 233 K are drawn at the 30% probability level. Intramolecular O \cdots O contacts [Å]: O(8) \cdots O(21), 2.70; O(20) \cdots O(33), 2.64; O(34) \cdots O(47) 2.77; $O(7) \cdots O(46)$, 2.77. The subunit $C(10) - C(13)$ is disordered over two orientations, here only one is shown for clarity. b) Short intermolecular $O \cdots O$ contacts in the crystal packing of 1c including solvent molecules and two O-atoms of the neighboring octol. A short $C-H \cdots O$ interaction $C(302') \cdots O(34)$ is also shown. The position of $O(200')$ is disordered over two orientations.

Fig. 3. a) ORTEP Representation of the cavitand 2b. Arbitrary numbering. Atomic displacement parameters obtained at 295 K are drawn at the 50% probability level. Intramolecular N \cdots N distances [Å]: N(15) \cdots N(46a), 4.42; N(22) \cdots N(39), 4.24. The subunit C(35) – C(36) is disordered over two orientations, here only one is shown for clarity. The CH₂Cl₂ molecule located within the cavity and two disordered MeCN molecules outside the cavity are not shown. b) View down the C₂ axis into the cavity filled by the solvent. N \cdots Cl Distances between the Cl- and N-atoms of adjacent quinoxaline moieties range from 3.64 to 4.02 Å.

The reaction of octol 1a with 2 equiv. of 2,3-dichloroquinoxaline (Me₂SO, K₂CO₃), followed by repeated chromatographic purification $(SiO₂; CH₂Cl₂/ACOEt$ mixtures), afforded *anti* doubly bridged tetrol $4a$ in up to 3.2% yield together with the *syn*-isomer **5a** as the major product (up to 20% yield). *Cram et al.* had previously also observed a preference for the formation of the syn-isomer during double bridging of an octol with methylene bridges; in fact, only the syn-product was isolated [16]. The chromatographic purification of the *anti*-isomer $4a$ was particularly challenging due to the presence of a side product with a nearly similar retention time.

Side-products comprised structures with quinoxaline moieties attached to the octol by one ether linkage only (the structures of these colorless substances with complex NMR spectra were tentatively assigned by means of mass spectrometry (MS)) as well as colored material with a low R_f value. The latter presumably consists of products resulting from ring opening of the octol macrocycle, followed by oxidation under formation of xanthene dye-type structures [17]. Yields of the desired products increase and those of side products decrease when i) the starting material is freshly recrystallized and thoroughly dried under high vacuum (10^{-6} Torr) over P₂O₅, *ii*) the mixture is degassed before initiating the reaction by freeze-pump cycles, and *iii*) the reaction temperature is kept below 50°.

In a model reaction, the doubly and triply bridged octols 3a and 5a were transformed with dichlorodiazaphthalimide 6 into the unsymmetrically bridged cavitands 7 and 8 (*Scheme 2*). For the preparation of the bridging reagent 6, 2,3dichloroquinoxaline was oxidized $(KMnO₄)$ to dicarboxylic acid 9 and subsequently transformed into anhydride 10 [1c]; oxalyl chloride was used instead of previously reported $S OCl₂$ as the ring-closure reagent. Heating 10 with 4-(tert-butyl)aniline in a small amount of Ac_2O , as reported [1c], did not prove to be very efficient, providing dichlorodiazaphthalimide 6 in only $ca. 20\%$ yield. On the other hand, milder conditions, with pyridine and oxalyl chloride as activation agents, afforded 6 in 86% yield. The reaction of 6 with diol 3a and tetrol 5a with K_2CO_3 in Me₂SO provided the fully bridged cavitands 7 and 8 in 66 and 50% yield, respectively. Neither macrocycle crystallized well; they eventually precipitated from $CHCl₃$ or THF solutions as very fine slightly yellowish powders.

For the planned single-molecule fluorescence studies, BODIPY dyes were selected as luminescent labels for their favorable electronic absorption and emission properties, and their low sensitivity to pH (which is important in proton-induced switching experiments) and environmental polarity [7]. Thus, 4-nitrobenzaldehyde was condensed with 2,4-dimethyl-3-ethylpyrrole under acidic conditions in CH_2Cl_2 to form the corresponding dipyrromethane, which was oxidized with chloranil and subsequently treated with BF₃ \cdot OEt₂ in the presence of Et₃N to form dye 11 in 38% yield (over the 3 steps; Scheme 3). Reduction of 11 (H_2 , Pd/C) afforded amine 12, which was coupled with anhydride 10 to give dichlorodiazaphthalimide 13.

Compound 11 afforded dark-purple crystals upon slow diffusion of hexane into a CHCl₃ solution. The X-ray crystal structure contains three symmetry-independent molecules in the asymmetric unit with the plane of the BODIPY dye nearly orthogonal $(75-87)$ to the plane of the attached phenyl ring (*Fig. 4*). This should also be the case in the corresponding dye-labeled cavitands $14-16$ (*Scheme 4*). This electronic decoupling of the π -systems ensures a very small influence of changes in the

a) KMnO₄, H₂O, 95 - 97°, 2 h; 49%. b) (COCl)₂, Py (cat.), THF, 50°, 20 min; 61%. c) 4-(tert-butyl)aniline, THF, 1 h, then $(COCl)_2$, Py, 50°, 12 h; 89%. d) 3a (1 equiv.), 6 (1 equiv.), K₂CO₃ (1 equiv.), Me₂SO, 20°, 24 h; 66%. e) **3a** (1 equiv.), 6 (2 equiv.), K_2CO_3 (2 equiv.), Me_2SO , 20°, 24 h; 50%. Py = pyridine.

Scheme 3. Synthesis of Dichlorodiazaphthalimide 13

a) TFA, CH₂Cl₂, 20°, 2 h. b) DDQ, toluene, 1 h. c) NEt₃, 20° (10 min), then BF₃ \cdot OEt₂, 20° (30 min), then 50° $(1 h); 38%$ (for steps $a-c$). d) H_2 (1 atm), Pd/C (10%), CHCl₃/EtOH 1:1, 20°, 12 h; 67%. e) 6, THF, 1 h, then $(COCl)_2$, Py, 50°, 12 h; 72%. TFA = CF₃COOH, DDQ = 2,3-dichloro-5,6-dicyano-p-benzoquinone.

Fig. 4. X-Ray crystal structure of BODIPY dye 11. Atomic displacement parameters obtained at 295 K are drawn at the 30% probability level. Only one of the three nonequivalent conformers in the elementary cell is shown.

protonation and conformation of the macrocycles on the position of the absorption and emission bands of the dye.

The BODIPY-substituted cavitands $14 - 16$ were prepared from diol $3a$, and tetrols 4a and 5a, respectively, in $54 - 73\%$ yield (*Scheme 4*). All three cavitands are brightly red-colored, featuring sharp optical absorption (530 nm) and emission (540 nm) maxima in CHCl $_3$ [9].

We also explored the introduction of different bridges into diol 3a and tetrol 5a by preparing the CH₂-bridged cavitands 17 and 18 (CH₂BrCl, K₂CO₃, Me₂SO; *Scheme 5*). The moderate yields (17: 55%; 18: 48%) can be explained by the steric hindrance between neighboring quinoxalines, which is enhanced by the short, conformationally enforcing C_1 -bridges in the cavitands. Interestingly, cavitand **18** could not be prepared starting with the corresponding $syn\text{-}CH_2$ -bridged tetrol [16] and 2,3-dichloroquinoxaline.

Finally, octanitrocavitand 19 was synthesized [11a] (Scheme 6) to study its conformational properties. It is the first resorcin[4]arene cavitand without substituents in ortho-position to the two O-atoms of the four resorcinol moieties that prefers the kite-conformation both in solution [10] and in the solid state.

Crystals of 19 were obtained by slow evaporation from acetone solution. They quickly disintegrated in the air due to the evaporation of solvent enclathrated in the crystal lattice. Also, they shattered at temperatures below $ca. 230 K$, probably due to a phase transition. The X-ray crystal structure obtained at 253K is remarkable. First, the cavitand is present in the *kite*-conformation ($Fig. 5, a$), which had not previously been observed for this type of resorcin[4]arene-based cavitands. Second, the cavitands do not form *face-to-face* dimers, as reported before by *Cram et al.* [1c,d] for velcraplexes,

a) 3a (1 equiv.), 13 (1 equiv.), K₂CO₃ (1 equiv.), Me₂SO, 20^o, 24 h; 73%. b) 4a (1 equiv.), 13 (2.2 equiv.), K_2CO_3 , (2.2 equiv.), Me₂SO, 20^o, 4 h, then K₂CO₃, (2.2 equiv.), 30 min; 54%. c) **5a** (1 equiv.), 13 (2 equiv.), K_2CO_3 (2 equiv.), Me_2SO , 20° , 24 h; 66% .

dimers of the velcrands, i.e., resorcine^[4]arene-based cavitands similar to those reported here but featuring Me-substituents in ortho-position to the two O-atoms of the four resorcinol moieties. Rather, the crystal lattice of 19 shows infinite 'head-totail'columns with voids filled by Me₂CO molecules (*Fig. 5,b*). We explain the preference of 19 for the *kite*-conformation with repulsive local dipole-dipole interactions between the eight $NO₂$ groups that approach each other closely in the vase-conformation. Dipolar repulsion between the $NO₂$ groups presumably also prevents the formation of face-to-face velcraplex-type dimers.

Scheme 5. Synthesis of Cavitands 17 and 18

a) 3a (1 equiv.), CH₂BrCl (4 equiv.), K₂CO₃ (2.5 equiv.), Me₂SO, 55°, 48 h; 55%. b) 5a (1 equiv.), CH₂BrCl $(10 \text{ equiv.}), K_2CO_3 (4 \text{ equiv.}), Me_2SO, 55^\circ, 48 \text{ h}; 47\%$.

Scheme 6. Synthesis of the Octanitrocavitand 19

a) 1,2-Difluoro-3,4-dinitrobenzene, NEt₃, DMF, 70 $^{\circ}$, 20 h; 51%.

2.2. Leg-Modified Cavitands. The visualization of single cavitand molecules and the construction of practical devices require immobilization on various types of solid supports. Therefore, a substantial effort in our research program is aimed at the synthesis of cavitands suitable for surface immobilization. Previously reported modifications include the introduction of HO- [18] or NH₂-terminated legs for i) enhancing the solubility in aqueous media $[3d]$, $ii)$ covalent bonding to surfaces $[19]$, and *iii*) coordination studies [20].

Cavitand 20 with four 3,5-di(tert-butyl)phenyl legs was prepared, since these legs had previously been shown to provide good adsorption of large molecules, such as porphyrins, on Cu surfaces for STM imaging [21]. The preparation of 20 started from 3,5-di(tert-butyl)phenylacetonitrile [22] that was converted via ester 21 into aldehyde 22 (Scheme 7). Acid-catalyzed condensation of 22 with resorcinol provided octol 23 in

Fig. 5. a) X-Ray crystal structure of octanitrocavitand 19 in a view onto the large kite surface. Atomic displacement parameters obtained at 253 K are drawn at the 30% probability level. Intramolecular O \cdots O distances [Å]: O(20) \cdots O(20a), 15.65; O(47) \cdots O(47a), 15.91; O(19) \cdots O(48), 13.63. Enclathrated acetone molecules are not shown. b) Packing diagram of 19 featuring columnar head-to-tail stacking.

Scheme 7. Synthesis of Cavitand 20

a) HCl/MeOH, reflux, 3 d; 99%. b) DIBAL-H, hexane, -78° , 3 h; 58%. c) Conc. HCl, EtOH, 60° , 5 d; 35%. d) $2,3$ -Dichloroquinoxaline, Cs₂CO₃, DMF, 60°, 3 d; 68%. DIBAL-H = diisobutylaluminum hydride.

35% yield, and subsequent bridging with 2,3-dichloroquinoxaline afforded cavitand 20 in 68% yield [4]. The molecular structure of 20 in the crystal has been previously reported [4]; Fig. 6 depicts the head-to-tail arrangements of the cavitand vases in the crystal lattice, leading to infinite columns, as already described for cavitands 2b (in the vase-form) and 19 (in the kite-form). A view into these infinite columns reveals narrow channels spanning the crystal lattice.

Fig. 6. Packing diagram of cavitand 20

Cavitand 24, with carboxylate legs, was prepared for Langmuir monolayer formation on an aqueous subphase. Rosenmund reduction of the acyl chloride of monomethyl glutarate gave aldehyde 25 that was condensed with resorcinol to afford octol 26 in 44% yield. Subsequent bridging with 2,3-dichloroquinoxaline provided 24 in 13% yield (Scheme 8). Attempts to hydrolyze the methyl ester legs proved to be fruitless; they either led to decomposition of the cavitand or left the ester intact $(K_2CO_3, Li_2CO_3,$ or LiOH in H₂O/THF 1:3).

Scheme 8. Synthesis of Cavitand 24

a) Pd/C, H_2 , 2,6-dimethylpyridine, THF, 20°, 24 h. b) Resorcinol, conc. HCl, MeOH, 60°, 2 d; 44% (steps a and b). c) 2,3-Dichloroquinoxaline, Cs_2CO_3 , DMF, 60° , 2 d; 13%.

Crystals of 24 were obtained by slow evaporation of a $MeCNCHCl₃$ solution. The X-ray crystal-structure analysis at 293K showed the cavitand in the vase-conformation with an asymmetric cavity $(Fig. 7)$. The unit-cell contains pairs of perpendicularly aligned cavitands making tail-to-tail contacts. Disordered solvent (MeCN and, probably, H_2O) is localized within the cavity and among the ester legs.

Alkyl-thioether legs were selected due to their well-known affinity for gold surfaces under formation of stable self-assembled monolayers (SAMs) [23] [24]. Cavitands 27 and 28 with alkyl-thioether legs [5] of different length were constructed employing slightly different synthetic strategies. Cavitand 27 was synthesized by acid-catalyzed condensation of resorcinol with the unsaturated aldehyde 29, followed by bridging the resulting octol 30 to give 31 featuring legs with terminal double bonds (*Scheme 9*). The thioether moiety was introduced in the last step by 9-BBN-catalyzed radical addition of decane-1-thiol to the olefinic legs. Cavitand 28 with shorter legs was prepared by direct condensation of the thioether-containing aldehyde 32, obtained by oxidation of alcohol 33, with resorcinol, followed by bridging the resulting octol 34 (Scheme 10). SAMs formed by 31 on Au(111) were successfully prepared and imaged by UHV-STM at the molecular level showing a well-ordered monolayer [5]. On the other hand, cavitand 28, with shorter legs, afforded only poorly ordered SAMs.

3. Conclusions. A series of Cram-type resorcin[4]arene-derived cavitands with modified cavity walls and legs were prepared with the aim to investigate in detail the conformational $vase-kite$ switching in bulk solution as well as at the level of single molecules immobilized on surfaces. Initial STM studies of monolayers on gold surfaces

Fig. 7. ORTEP Representation of cavitand 24 with atomic displacement parameters shown at the 30% probability level (293K). MeCN included within the cavity and solvent present among the ester tails are removed for clarity. Intramolecular N \cdots N distances [Å]: N(17) \cdots N(102), 4.18; N(24) \cdots N(43), 4.30; N(50) \cdots N(69), 4.22; $N(76) \cdots N(95)$, 4.47.

have already been reported [5], and a subsequent paper will present a detailed spectroscopic analysis of the scope and limitations of vase–kite switching in solution [10]. The novel substitution patterns of cavitands 15 and 16 with differential wall components open multiple opportunities for future functionalization. As an example, additional recognition sites could be attached (instead of the dye labels in 15 and 16) for enhancing the selectivity for specific guests encapsulated in the deep cavitand cavity. Modification of the legs provided cavitands for surface immobilization and Langmuir-Blodgett film formation; vase-kite switching on surfaces and in monolayers is currently investigated in collaborative work by a variety of physical methods. This paper reports the first X-ray structural analysis of a resorcin[4]arene-based cavitand (19) in the kite-conformation. Consequently, the two different conformational

Scheme 9. Synthesis of Cavitand 17

a) Conc. HCl, EtOH, 20°, 25 h; 93%. b) 2,3-Dichloroquinoxaline, Cs₂CO₃, Me₂SO, 20°, 2 d; 44%. c) Decane-1thiol, 9-BBN, THF, 20° , 2 d; 74% . 9-BBN = 9-Borabicyclo[3.3.1] nonane.

Scheme 10. Synthesis of Cavitand 28

a) 9-BBN, THF, 20°, 3 h; 99%. b) PCC, CH₂Cl₂, 20°, 5 h; 31%. c) Conc. HCl, EtOH, 60°, 24 h; 99%. d) 2,3-Dichloroquinoxaline, Cs_2CO_3 , Me₂SO, 20°, 4 d; 52%. PCC = pyridinium chlorochromate.

states are now structurally well-characterized in the solid state, which also provides a sound basis for the interpretation of the results of switching studies in solution [10] and at the single-molecule level.

Support by the Swiss National Science Foundation, via the NFP 'Supramolecular Functional Materials' and the NCCR 'Nanoscience' is gratefully acknowledged. Y. Y. thanks the Japan Science Technology Corporation Overseas Fellowship Program for a postdoctoral fellowship.

Experimental Part

General. Reagent-grade solvents and reagents were purchased and used without further purification (except for 2,3-dichloroquinoxaline that was recrystallized from EtOH or MeOH). Octols $1a - 1c$ were prepared according to [13]; they were purified by recrystallization $(2 \times)$ from MeOH (1a and 1b) or MeOH/EtOH 4:1 (1c; for X-ray, see Fig. 2) and dried under high vacuum over P_2O_5 to afford the products as slightly pinkish powders. Diol 3a was prepared according to [2b], and pyrazine derivatives 9 and 10 according to [1c]. Cavitands 2a [2b], and 2b and 2c [1b] have been previously reported (for the X-Ray crystal structure of 2b, see Fig. 3). All reactions were carried out under Ar or N_2 atmosphere. Flash chromatography (FC): SiO₂ from Fluka or Merck $230 - 400$ mesh (particle size $40 - 63$ µm). Anal. TLC: precoated $SiO₂$ glass plates with $F₋₂₅₄$ fluorescent indicator; visualization with UVlight at 254 or 366 nm. M.p.: Büchi Melting Point B-540; uncorrected. The m.p.

of the highly colored BODIPY dyes could not be accurately determined. UV/VIS [nm]: Varian Cary-500 Scan spectrophotometer; λ_{\max} in nm (ε in M^{-1} cm⁻¹). Fluorescence: *Instruments S. A. Fluorolog-3* spectrofluorometer. IR $[cm^{-1}]$: Perkin-Elmer 1600-FTIR; in CCl₄ or in KBr pellets. ¹H-, ¹³C-, and ¹⁹F-NMR spectra [ppm]: Varian Mercury-300 spectrometers at r.t.; internal references [ppm]: CDCl₃: 7.26 (\rm{H}), 77.23 ($\rm{^{13}C}$); CD₂Cl₂: 5.32 ($\rm{^{14}H}$), 53.80 (13 C); (CD₃)₂CO: 2.05 (1 H), 29.80 (13 C); CD₃OD: 3.31 (1 H), 49.15 (13 C); (D₈)THF (C₄D₈O): 1.73 (1 H), 25.20 (¹³C); CFCl₃ was used as a reference for ¹⁹F-NMR (0.00 ppm). FT-ICR-MALDI-MS: Ion Spec Ultima FT-ICR-MS (337-nm N₂-laser system); matrix: DHB (2,3-hydroxybenzoic acid) or DCTB ($\{(2E) -3 - [4-(ter-t)]\}$ butyl)phenyl]-2-methylprop-2-enylidene}malonitrile). EI-MS: VG Analytical Tribrid, USA. FAB-MS: VG Analytical ZAB2-SEQ, USA. Elemental analyses were performed by the Mikrolabor at the Laboratorium für Organische Chemie, ETH Zürich.

r-11,c-13,c-29,c-36-Tetrahexyl-7,10 : 12,15 : 24,27 : 29,32-tetraethano-8,31 : 14,25-dimethano-11H,28H-[1,4,14,17] tetraoxacyclohexacosino[2,3-b : 15,16-b']diquinoxaline-36,38,42,43-tetrol (4a) and r-11,c-13,c-29,c-36-Tetrahexyl--3,15-(methano[1,3]benzenomethano)-11H,13H-benzo[1'',2'': 5,6;-5'',4'': 5',6']bis[1,4]benzodioxonino[2,3-b :2',3' b'/diquinoxaline-8,16,33,35-tetrol (5a). To a degassed (freeze-pump) soln. of 1a (2.48 g, 3.01 mmol) in Me₂SO (40 ml) , K₂CO₃ (0.416 g, 3.01 mmol) and 2,3-dichloroquinoxaline (1.20 g, 6.02 mmol) were added, and the mixture was stirred for 1 h. More K_2CO_3 (0.832 g, 6.02 mmol) was added, and stirring under Ar was continued for 18 h at r.t. and 6 h at 50°. After cooling, the brown soln. was added to H₂O (50 ml), and the pH was adjusted to $6 - 7$ by addition of 1M HCl. The pink precipitate formed was isolated by filtration, washed with H₂O (50 ml), and dried under high vacuum over P₂O₅. FC (SiO₂; CH₂Cl₂/AcOEt 95:5 \rightarrow 85:5) afforded 2a (107 mg, 2.7%) 3a (603 mg, 16.6%), 4a (103 mg, 3.2%), and 5a (637 mg, 19.6%). Data of 4a: R_f (SiO₂; CH₂Cl₂/AcOEt 90:10) 0.3. M.p. 285 (dec.). IR (KBr): 3404 (br.), 2927, 2857, 1616, 1584, 1490, 1466, 1412, 1335, 1281, 1224, 1169, 1073, 894, 858, 760, 606. ¹H-NMR ((CD₃)₂CO, 300 MHz): 0.88 – 0.94 (m, 12 H); 1.25 – 1.48 (m, 32 H); 2.36-2.45 (m, 8 H); 4.56 (t, J = 7.8, 2 H); 5.51 (t, J = 7.8, 2 H); 7.15 (s, 4 H); 7.27 – 7.32 (m, 4 H); 7.55 – 7.60 (m, 4 H); 7.75 (s, 4 H); 9.04 (s, 4 H). 13C-NMR ((CD3)2CO, 75 MHz): 14.36; 23.35; 28.88; 28.97; 32.69; 32.73; 33.99; 34.79; 34.96; 110.93; 125.33; 127.99; 129.62; 130.11; 131.69; 139.92; 152.70; 152.93; 153.08. HR-MALDI-MS (DHB): 1099.5568 ($[M + Na]$ ⁺, C₆₈H₇₆N₄O₈Na⁺; calc.: 1099.5555). Data of **5a**: R_f (SiO₂; CH₂Cl₂/AcOEt 85:15) 0.3. M.p. > 270[°] (dec.). IR (KBr): 3416 (br.), 2927, 2857, 1619, 1585, 1491, 1414, 1336, 1285, 1235, 1153, 1119, 1078, 899, 852, 759, 607. ¹H-NMR ((CD₃)₂CO, 300 MHz): 0.86 – 0.95 (m, 12 H); 1.24 – 1.50 (m, 32 H); 2.21 – 2.39 (m, $(4 H)$; $2.41 - 2.51$ $(m, 4 H)$; 4.30 $(t, J = 8.1, 2 H)$; 5.51 $(t, J = 8.1, 2 H)$; 6.18 $(s, 1 H)$; 7.13 $(s, 2 H)$; 7.50 $(s, 1 H)$; 7.62 - 7.81 (m, 8 H); 7.95 (s, 1 H); 8.08 - 8.11 (m, 2 H); 8.36 (s, 1 H); 8.72 (s, 4 H). ¹³C-NMR ((CD₃)₂CO, 75 MHz): 14.34; 14.38; 23.33; 23.36; 28.87; 28.97; 32.60; 32.71; 34.08; 34.52; 35.15; 103.49; 110.73; 118.70; 124.39; 125.107; 125.62; 125.75; 128.37; 128.72; 130.09; 130.19; 130.47; 130.98; 137.88; 140.33; 140.38; 152.08; 152.80; 153.29; 153.37. HR-MALDI-MS (DHB): 1099.5563 ($[M + Na]$ ⁺, C₆₈H₇₆N₄O₈Na⁺; calc.: 1099.5555).

5,6-Dichloropyrazine-2,3-dicarboxylic Acid 4-(tert-Butyl)phenylimide (6). To 10 (0.197 g, 0.90 mmol) in THF (3ml), 4-(tert-butyl)aniline (0.144 ml, 0.90 mmol) was added, and the mixture was stirred for 2 h at r.t. under Ar. Oxalyl chloride (0.085 ml, 0.99 mmol) and pyridine (0.160 ml, 1.98 mmol) were added, and the mixture was heated to 50 \degree for 12 h. After filtration, the mixture was evaporated to dryness, and the residue was co-evaporated with heptane (3 x) to remove traces of pyridine. FC (SiO₂; CH₂Cl₂/cyclohexane 3:1) gave 6 (279 mg, 89%). Pale-yellow crystals. M.p. 268–268.5°. R_f (SiO₂; CH₂Cl₂/cyclohexane 3:1) 0.25. ¹H-NMR $(CDCl₃, 300 MHz): 1.36 (s, 9 H); 7.33 - 7.38 (m, 2 H); 7.53 - 7.58 (m, 2 H). ¹³C-NMR (CDCl₃, 75 MHz): 31.54;$ 35.15; 125.94; 126.60; 127.53; 143.24; 152.48; 154.09; 161.34.

7-[4-(tert-Butyl)phenyl]-60-endo,64-endo,68-endo,72-endo-tetrahexyl-2,12,16,27,31,42,46,57-octaoxa-4,7,10,18,25,33,40,48,55-nonaazaheptadecacyclo[56.15.1.159,73.03,11.05,9.013,71.015,69.017,26.01 9,24.028,6703,63.032,41.034,39.043,63. $0^{45,61}$, $0^{47,56}$, $0^{49,54}$] pentaheptaconta-1(73),3,5(9),10,13,15(69),17,19(24),20,22,25,28,30(65),32,34(39),35,37,40,43, 45(61),47,49(54),50,52,55,58(74),59(75),62,66,70-triacontaene-6,8-dione (7). To 3a (0.081 g, 0.067 mmol) and 6 (0.024 g, 0.067 mmol) in degassed Me₂SO (2.5 ml), K_2CO_3 (0.012 g, 0.084 mmol) was added, and the mixture was stirred under Ar at r.t. for 40 h. After addition of H₂O, the precipitate formed was isolated by filtration, washed with H₂O (5 ml), and dried under vacuum over P₂O₅. FC (SiO₂; CH₂Cl₂/AcOEt 100:0 \rightarrow 98:2) afforded 7 (65 mg, 66%). Yellowish powder. R_f (SiO₂; CH₂Cl₂/AcOEt 98:2) 0.43. M.p. > 340° (dec.). IR (KBr): 3070, 2955, 2927, 2858, 1795, 1742, 1606, 1570, 1516, 1482, 1414, 1362, 1333, 1265, 1223, 1159, 1118, 1091, 1066, 913, 898, 761, 604. ¹H-NMR (CDCl₃, 300 MHz): 0.90 – 0.96 $(m, 12 H)$; 1.27 – 1.53 $(m, 32 H)$; 1.43 $(s, 9 H)$; 2.20 – 2.32 (br. m, 8 H); 5.46 (t, J = 7.8, 1 H); 5.50 – 5.59 (m, 3 H); 7.11 – 7.15 (m, 2 H); 7.20 (s, 2 H); 7.23 (s, 2 H); 7.33 – 7.60 (m, 8 H); 7.81 - 7.93 (m, 6 H); 8.13 (s, 2 H); 8.16 (s, 2 H). ¹³C-NMR (CDCl₃, 75 MHz): 14.42; 22.99; 28.21; 29.67; 31.65; 32.16; 32.57; 32.75; 34.66; 35.18; 118.53; 118.96; 123.50; 123.80; 125.92; 126.35; 127.58; 127.87; 128.08; 128.70; 129.23; 129.46; 135.41; 135.55; 135.81; 136.85; 139.62; 139.76; 141.14; 152.05; 152.16; 152.24;

152.37; 152.63; 152.79; 152.87; 158.44; 161.77. HR-MALDI-MS (DHB): 1480.6805 (MH^+ , $C_{92}H_{90}N_9O_{10}^+$; calc.: 1480.6805).

7,21-Bis[4-(tert-butyl)phenyl]-59-endo,63-endo,67-endo,71-endo-tetrahexyl-2,12,16,26,30,41,45,56-octaoxa- $4,7,10,18,21,24,32,39,47,54-decaazahentadecacyclo[55.15.1.1^{58,72} *O*^{3,11} *O*^{5,9} *O*^{13,70} *O*^{15,68} *O* ^{17,25} *O*^{19,23} *O*^{27,66} *O*^{29,64} *O*^{31,40} *O*^{33,38}.$ $0^{42.62}$, $0^{44.60}$, $0^{46.55}$, $0^{48.53}$ [tetraheptaconta-1(72), 3,5(9), 10,13,15(68), 17,19(23), 24,27,29(64), 31,33(38), 34,36,39,42,44(60), 46,48(53),49,51,54,57(73),58(74),61,65,69-octacosaene-6,8,20,22-tetrone (8). To 5a (0.060 g, 0.056 mmol) and 6 $(0.039 \text{ g}, 0.11 \text{ mmol})$ in degassed Me₂SO (2 ml), K₂CO₃ (0.019 g, 0.139 mmol) was added, and the mixture was stirred under Ar at r.t. for 24 h. H₂O (5 ml) was added, and the formed precipitate was isolated by filtration. Washing with H₂O (5 ml), drying under vacuum over P₂O₅, and FC (SiO₂; CH₂Cl₂/AcOEt 100:0 \rightarrow 97:3) afforded 8 (46 mg, 50%). Yellowish powder. $R_f = (SiO_2; CH_2Cl_2/AccOEt 98:2)$ 0.45. M.p. > 350° (dec.). IR (KBr): 3073, 2956, 2927, 2859, 1797, 1741, 1696, 1579, 1517, 1483, 1413, 1369, 1333, 1265, 1223, 1202, 1160, 1090, $1065, 914, 900, 817, 764; 603.$ $H-NMR ((D_8)THF, 300 MHz): 0.93 - 0.97 (m, 12 H); 1.36 - 1.54 (m, 32 H); 1.43 (s,$ 18 H); 2.36 – 2.47 $(m, 8 \text{ H})$; 5.67 $(t, J = 8.1, 2 \text{ H})$; 5.78 $(t, J = 8.1, 2 \text{ H})$; 7.04 – 7.09 $(m, 4 \text{ H})$; 7.32 – 7.60 $(m, 12 \text{ H})$; 7.96 - 7.99 $(m, 5 H)$; 8.24 - 8.25 $(m, 3 H)$. ¹³C-NMR $((D_8)THF, 75 MHz)$: 14.34; 23.47; 28.81; 28.85; 30.06; 30.11; 31.72; 32.77; 32.92; 34.93; 35.04; 35.29; 119.61; 119.99; 124.18; 124.63; 125.28; 125.95; 127.11; 128.38; 129.38; 129.64; 129.86; 130.17; 136.57; 136.72; 137.21; 137.76; 140.15; 140.27; 142.62; 142.96; 151.39; 152.66; 152.92; 153.07; 153.47; 153.57; 157.60; 157.85; 161.57; 162.27. HR-MALDI-MS (DHB): 1631.7306 (MH+, C $_{100}$ H $_{99}$ N $_{10}$ O $_{12}^+$; calc.: 1631.7444).

2,8-Diethyl-5,5-difluoro-1,3,7,9-tetramethyl-10-(4-nitrophenyl)-dipyrrolo[1,2-c : 2,1-f][1,3,2]diazaborinin-4 ium-5-uide (11). A soln. of 2,4-dimethyl-3-ethyl-1H-pyrrole (3.21 g, 26.1 mmol) and 4-nitrobenzylaldehyde (1.97 g, 13.0 mmol) in CH₂Cl₂ (500 ml) was degassed (bubbling N₂ for 1 h), and TFA (0.10 ml, 1.3 mmol) was added. After stirring for 2 h at r.t., the mixture was washed with sat. aq. NaHCO₃ soln., H₂O, and sat. aq. NaCl soln., dried (Na_2SO_4) , and evaporated to yield the intermediate dipyrromethane $(4.98 g)$. This compound (4.01 g, 10.6 mmol) was dissolved in PhMe (50 ml), and DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone, 2.41 g, 10.6 mmol) was added as a suspension in PhMe (100 ml) . After stirring for 1 h at r.t., Et₃N (4.4 ml, 32 mmol) was added to the black mixture, and, 10 min later, $BF_3 \cdot OEt_2$ (6.7 ml, 53 mmol) was added. The mixture was stirred at r.t. for 30 min, then heated to 50 \degree for 1 h. After cooling, the mixture was filtered through a short plug (SiO₂; toluene), and the soln. was evaporated to dryness. FC (SiO₂; PhMe CH₂Cl₂/cyclohexane 3:2) gave 11 (1.71 g, 38%). Dark-red powder; purple soln. in CHCl₃. M.p. 193.5 - 196°. $R_f(SiO_2; CH_2Cl_2/cyclohexane$ 3: 2) 0.4. UV/VIS (CHCl₃): 533 (70000). Fluorescence (CHCl₃): 540. IR (CCl₄): 2966, 2930, 2873, 2853, 1600, 1543, 1530, 1475, 1411, 1388, 1346, 1320, 1192, 1161, 1114, 1083, 1054, 980, 856. ¹H-NMR (CDCl₃, 300 MHz): 0.98 $(t, J=7.5, 6 \text{ H})$; 1.26 (s, 6 H); 2.32 (q, J = 7.5, 4 H); 2.54 (s, 6 H); 7.51 – 7.55 (m, 2 H); 8.35 – 8.40 (m, 2 H). 13C-NMR (CDCl3 , 75 MHz): 12.32; 12.91; 14.88; 17.36; 77.43; 124.36; 129.99; 133.57; 136.88; 137.76; 142.92; 148.25; 154.99. ¹⁹F-NMR (CDCl₃, 282.5 MHz): -145.96 (q , $J=35$). HR-MALDI-MS (DHB): 425.2083 (M^{+} , $C_{23}H_{26}BF_{2}N_{3}O_{2}^{+}$; calc.: 425.20807). X-Ray: see Fig. 4.

10-[4-Aminophenyl]-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyldipyrrolo[1,2-c :2,1-f][1,3,2]diazaborinin-4 ium-5-uide (12). To 11 (485 mg, 1.14 mmol) in CH₂Cl₂/EtOH 1:1 (30 ml), Pd/C 10% (62 mg) was added, and the mixture was stirred under H_2 for 12 h. Filtration through Celite, evaporation to dryness, and FC (SiO₂; CH_2Cl_2) afforded 12 (301 mg, 67%). Orange powder; bright-orange soln. in CHCl₃. M.p. 280-285° (dec.). R_f (SiO₂; CH₂Cl₂) 0.47. UV/VIS (CHCl₃): 526 (71000). Fluorescence (CHCl₃): 536. IR (KBr): 3507, 3415, 2962, 2925, 2869, 1620, 1529, 1474, 1402, 1318, 1276, 1193, 1161, 1114, 1083, 1055, 1016, 976, 867, 831, 798, 761, 707, 659, 612, 534. ¹H-NMR (CDCl₃, 300 MHz): 0.98 (*t*, *J* = 7.5, 6 H); 1.40 (*s*, 6 H); 2.31 (*q*, *J* = 7.5, 4 H); 2.52 (*s*, 6 H); 3.82 $(br, s, 2H); 6.75 - 6.80$ $(m, 2H); 6.99 - 7.03$ $(m, 2H).$ ¹³C-NMR (CDCl₃, 75 MHz): 12.26; 12.80; 14.99; 17.41; 115.55; 125.71; 129.33; 131.47; 132.58; 138.62; 141.13; 146.90; 153.26. ¹⁹F-NMR (CDCl₃, 282.5 MHz): -145.29 $(q, J=35)$. HR-MALDI-MS (DHB): 395.2341 $(M^+, C_{23}H_{28}BF_2N_3^*$; calc.: 395.23389). Anal. calc. for $C_{23}H_{28}BF_2N_3$ (395.296): C 69.88, H 7.14, B 2.73, F 9.61, N 10.63; found: C 69.71, H 6.91, N 10.47.

10-[4-(2,3-Dichloro-5,7-dioxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazin-6-yl)phenyl]-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyldipyrrolo[1,2-c : 2,1-f][1,3,2]diazaborinin-4-ium-5-uide (13). To 7 (0.109 g, 0.497 mmol) in THF (4 ml), 12 (0.187 g, 0.473mmol)) was added, and the soln. was stirred for 1 h at r.t. under Ar. Oxalyl chloride (0.048 ml, 0.57 mmol) and pyridine (0.115 ml, 1.42 mmol) were added, and the mixture was heated to 50 for 12 h. The soln. obtained after filtration was evaporated to dryness, and the residue co-evaporated with heptane (3 x) to remove traces of pyridine. FC (SiO₂; CH₂Cl₂) afforded 13 (212 mg, 72%). Red powder; brightpurple soln. in CHCl₃. M.p. 285–295° (dec.). $R_f = (SiO_2; CH_2Cl_2)$ 0.55. UV/VIS (CHCl₃): 530 (73000). Fluorescence (CHCl3): 537. IR (KBr): 2965, 2930, 2871, 1803, 1740, 1541, 1518, 1477, 1388, 1373, 1320, 1272, 1234, 1194, 1161, 1116, 1067, 979, 803, 760, 702, 536. ¹H-NMR (CDCl₃, 300 MHz): 0.99 (t, J = 7.5, 6 H); 1.35 (s, 6 H); $2.31 (q, J = 7.5, 4 \text{ H}); 2.52 (s, 6 \text{ H}); 7.48 - 7.52 (m, 2 \text{ H}); 7.62 - 7.66 (m, 2 \text{ H}).$ ¹³C-NMR (CDCl₃, 75 MHz): 12.34;

3664 HE

12.87; 14.94; 17.42; 77.43; 126.70; 129.56; 130.67; 131.03; 133.26; 136.62; 138.35; 143.01; 154.34; 160.92. 19F-NMR $(CDCl_3, 282.5 MHz): -145.14 (q, J=35)$. HR-MALDI-MS (DHB): 595.1523 $(M^+, C_{29}H_{26}BCl_2F_2N_3O_2^*$; calc. 595.15192).

Compound 14 (for nomenclature and full characterization, see [9]). Preparation as described for 7 from 3a $(0.060 \text{ g}, 0.050 \text{ mmol})$, 13 $(0.030 \text{ g}, 0.050 \text{ mmol})$, and K_2CO_3 $(0.0086 \text{ g}, 0.062 \text{ mmol})$ in Me₂SO (2.5 ml). CC $(SiO₂; CH₂Cl₂/ACOEt 100:0 \rightarrow 98:2)$ afforded 14 (63 mg, 73%). Bright-red solid.

Compound 15 (for nomenclature and full characterization, see [9]). To a degassed soln. of 4a (0.018 g, 0.0167 mmol) and 13 (0.022 g, 0.0367 mmol) in Me₂SO (1 ml), K₂CO₃ (0.0051 g, 0.0367 mmol) was added. After stirring under Ar at r.t. for 4 h, additional K_2CO_3 (0.0051 g, 0.0367 mmol) was added. A dark-red precipitate formed within 30 min, H2O (5 ml) was added, and the precipitate was isolated by filtration, washed with H2O (5 ml), and dried under vacuum over P₂O₅. FC (SiO₂; CH₂Cl₂/AcOEt 100 : $0 \rightarrow 97:3$) provided 15 (19 mg, 54%). Bright-red solid.

Compound 16 (for nomenclature and full characterization, see [9]). Preparation as described for 8 from 5a $(0.035 \text{ g}, 0.032 \text{ mmol})$, **13** $(0.038 \text{ g}, 0.064 \text{ mmol})$, and K_2CO_3 $(0.009 \text{ g}, 0.064 \text{ mmol})$ in Me₂SO (1.5 ml). FC (SiO₂; $CH_2Cl_2/ACOE$ 100 : $0 \rightarrow 97$: 3) gave 16 (45 mg, 66%). Bright-red solid.

52-endo,56-endo,60-endo,64-endo-Tetrahexyl-2,4,8,19,23,34,38,49-octaoxa-10,17,25,32,40,47-hexaazapentadecacyclo[48.15.1.151,65.05,63.07,61.09,18. 011,16.020,59.022,57.024,33.026,31.035,55.037,53.039,48.041,46]heptahexaconta-1(65),5,7(61), 9,11(16),12,14,17,20,22(57),24,26(31),27,29,32,35,37 (53),39,41(46),42,44,47,50(66),51(67),54,58,62-heptacosaene (17). To a degassed soln. of 3a (0.088 g, 0.073 mmol) in Me₂SO (4 ml), K₂CO₃ (0.015 g, 0.109 mmol) and CH₂BrCl (0.019ml, 0.29 mmol) were added, and the mixture was stirred for 12 h at 45° under Ar. Additional K_2CO_3 (0.10 g, 0.073 mmol) and CH₂BrCl (0.019 ml, 0.29 mmol) were added, and the mixture was stirred at 55° for 30 h. After addition of cold H₂O (10 ml), the precipitate formed was isolated by filtration and dried (P₂O₅). FC (SiO₂; CH₂Cl₂/AcOEt 100 : 0 \rightarrow 97:3) provided 17 (49 mg, 55%). Colorless amorphous solid. R_f (SiO₂; CH₂Cl₂/cyclohexane 3:1) 0.37. M.p. 335° (dec.). IR (KBr): 3067, 2954, 2927, 2857, 1607, 1579, 1570, 1485, 1415, 1334, 1276, 1222, 1162, 1118, 1068, 972, 913, 896, 759, 606. ¹H-NMR (CDCl₃, 300 MHz): 0.91 – 0.98 (m, 12 H); $1.32 - 1.55$ $(m, 32 H)$; $2.22 - 2.37$ $(m, 8 H)$; 4.10 $(d, J = 7.2, 1 H)$; 4.71 $(t, J = 8.1, 1 H)$; 5.66 $(d, J = 7.2, 1 H)$; 5.71 $(m, 3H)$; 7.22 $(s, 2H)$; 7.23 $(s, 2H)$; 7.24 $(s, 2H)$; 7.44 - 7.59 $(m, 6H)$; 7.68 - 7.72 $(m, 2H)$; 7.86 - 7.93 $(m, 4H)$; 8.29 (s, 2 H). ¹³C-NMR (CDCl₃, 75 MHz): 14.30; 22.89; 28.07; 28.18; 29.62; 29.70; 30.62; 32.09; 32.34; 32.55; 34.30; 34.46; 36.55; 99.63; 117.38; 118.92; 121.88; 123.94; 128.02; 129.28; 129.36; 129.49; 135.42; 136.12; 136.53; 138.66; 139.90; 139.94; 152.18; 152.67; 152.88; 152.92; 153.09; 155.44. HR-MALDI-MS (DHB): 1215.5966 $(MH^+, C_{77}H_{79}N_4O_8^+;$ calc.: 1215.59602).

43-endo,47-endo,51-endo,55-endo-Tetrahexyl-2,4,8,10,14,25,29,40-octaoxa-16,23,31,38-tetraazatridecacyclo- [39.15.1.142,56.05,54.07,52.011,50.013,46.015,24.017,22.026,46.028,44.030,39.032,37]octapentaconta-1(56),5,7(52),11,13(48),15,17(22), 18,20,23,26,28(44),30,32(37),33,35,38,41(57),42(58),45,49,53-docosaene (18). To a degassed soln. of 5a $(0.070 \text{ g}, 0.066 \text{ mmol})$ in Me₂SO (3 ml), K₂CO₃ (0.036 g, 0.26 mmol) and CH₂BrCl (0.042 ml, 0.65 mmol) were added, and the mixture was stirred under Ar for 12 h at 55° . Additional K₂CO₃ (0.018 g, 0.13 mmol) and CH₂BrCl (0.021 ml, 0.325 mmol) were added, and the mixture was stirred for 24 h. After addition of cold H₂O (10 ml), the precipitate formed was isolated by filtration and dried (P₂O₅). FC (SiO₂; CH₂Cl₂/AcOEt 100 : 0 \rightarrow 99.5:0.5) afforded 18 (34 mg, 47%). Colorless powder. R_f (SiO₂; CH₂Cl₂/cyclohexane 3:1) 0.42. M.p. 295° (dec.). IR (KBr): 3068, 2954, 2927, 2857, 1607, 1579, 1486, 1414, 1333, 1284, 1261, 1222, 1118, 1073, 973, 914, 896, 760, 719, 606. ¹H-NMR (CDCl₃, 300 MHz): 0.89 – 0.97 (m, 12 H); 1.30 – 1.57 (m, 32 H); 2.19 – 2.35 (m, 8 H); 4.16 $(d, J = 7.2, 2 \text{ H})$; 4.71 $(t, J = 8.1, 2 \text{ H})$; 5.65 $(d, J = 7.2, 2 \text{ H})$; 5.73 $(t, J = 8.1, 2 \text{ H})$; 6.33 $(s, 1 \text{ H})$; 7.14 $(s, 1 \text{ H})$; 7.19 $(s, J = 1, 2 \text{ H})$ 1 H); 7.21 (s, 2 H); 7.32 (s, 2 H); 7.55 – 7.67 (m, 4 H); 7.83 (br. d, $J = 7.8$, 2 H); 8.01 (br. d, $J = 7.8$, 2 H); 8.34 (s, 1 H). 13C-NMR (CDCl3 , 75 MHz): 14.41; 22.98; 23.01; 28.14; 28.30; 29.73; 29.79; 30.51; 32.18; 32.21; 32.28; 34.54; 36.60; 99.54; 116.61; 117.15; 118.72; 120.28; 121.97; 124.33; 128.03; 129.38; 129.65; 135.34; 136.25; 137.86; 139.01; 139.88; 151.95; 152.46; 152.76; 153.08; 154.80; 155.39. HR-MALDI-MS (DHB): 1101.5748 (MH, $C_{70}H_{77}N_4O_8^+$; calc.: 1101.57423).

2,3 : 2',3': 2'',3'': 2''',3'''-{2-endo,8-endo,14-endo,20-endo-Tetrahexylpentacyclo[19.3.1.13,719,13.15,19]octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecaene-4,24:6,10 : 12,16 : 18,22-octayloctaoxy}tetrakis(5,6-dinitropyrazine) (19). To 1a (0.890 g, 1.08 mmol) and 1,2-difluoro-3,4-dinitrobenzene (0.969 g, 4.75 mmol) in DMF (30 ml), Et₃N (2.41 ml, 17.3 mmol) was added dropwise, and the mixture was heated to 70 \degree for 12 h. After cooling, the mixture was poured into 1_M HCl (200 ml), and the precipitate formed was isolated by filtration, washed with 1M HCl (200 ml), H_2O (200 ml), and dried (P₂O₅). FC (SiO₂; CH₂Cl₂) afforded 19 (814 mg, 51%). Slightly yellowish powder. M.p. 295–315° (dec.). R_f (SiO₂; CH₂Cl₂) 0.65; $R_f = (SiO_2; CH_2Cl_2/cyclohexane 3:1)$ 0.13. IR (KBr): 3056, 2930, 2858, 1594, 1542, 1486, 1362, 1326, 1287, 1192, 1142, 1078, 899, 851, 823, 752, 653. $1H-NMR$ (CDCl₃, 300 MHz): 0.84 – 0.89 (m, 12 H); 1.09-1.19 (m, 32 H); 1.96 – 2.08 (m, 8 H); 3.90 – 3.96 (m,

4 H); 6.21 (br. s, 2 H); 7.01 (s, 2 H); 7.02 (s, 2 H); 7.22 (br. s, 2 H); 7.63(s, 4 H); 7.66 (s, 4 H). 13C-NMR $((CD₃)₂CO, 75 MHz): 14.24; 23.28; 27.81; 31.85; 32.52; 37.14; 153.72$ (other peaks not resolved due to conformational equilibration). HR-MALDI-MS (DHB): 1503.4538 ($[M + Na]$ ⁺, C₇₆H₇N₈O₂₄Na⁺; calc.: 1503.45569). X-Ray: see Fig. 5.

Methyl 2-[3,5-Di(tert-butyl)phenyl]acetate (21) [25]. HCl Gas was bubbled for 20 min through a soln. of 2-[3,5-di-(tert-butyl)phenyl]acetonitrile [22] (38.8 g, 169 mmol) in anh. MeOH (350 ml), and the mixture was heated to reflux for 3d under Ar. Evaporation under reduced pressure gave a residue that was dissolved in CH_2Cl_2 (1000 ml). The soln. was washed with 1M HCl (400 ml), dried (MgSO₄), and evaporated. Filtration of the resulting oil through a short column (5 cm SiO₂; CH₂Cl₂) gave 21 (43.8 g, 99%). Pale-yellow oil. R_f (SiO₂; hexane/CH₂Cl₂ 1 : 1) 0.42. ¹H-NMR (300 MHz, CDCl₃): 1.33 (s, 18 H); 3.66 (s, 2 H); 3.70 (s, 3 H); 7.13 (d, J = 1.9, 2 H); 7.34 (t, J = 1.9, 1 H). ¹³C-NMR (75 MHz, CD₃OD): 30.5; 34.2; 40.8; 51.0; 120.7; 123.2; 133.4; 150.8; 173.2. EI-MS: 262 $(M^+), 247$ ($[M-Me]^+$).

 $2-\{3,5-Di(\text{tert-butyl})phenylJacedaldehyde (22) [26]$. To a soln. of 21 (43.8 g, 167 mmol) in hexane (350 ml), cooled to -78° , DIBAL-H (1M in hexane, 200 ml) was added *via* cannula under N₂, and the mixture was stirred at -78° for 3 h. After cautious addition of MeOH (30 ml), the mixture was poured into sat. aq. Na/K tartrate soln. (400 ml). AcOEt (400 ml) was added, and the mixture was stirred for 12 h. The org. layer was separated, and the aq. layer was washed with AcOEt (2×300 ml). The combined org. layers were dried (K_2CO_3) and evaporated under reduced pressure. Distillation (114 – 116° 0.8 Torr) gave 22 (22.4 g, 58%). Yellow oil. R_f (SiO₂; CH2Cl2) 0.58. UV/VIS (MeOH): 256 (1120). IR (CH2Cl2): 2964, 1718, 1595, 1472, 1395, 1364, 1262, 1190, 1159, 1097, 1000, 892, 867, 815, 697. ¹H-NMR (300 MHz, CDCl₃): 1.35 (s, 18 H); 3.68 (d, J = 2.4, 2 H); 7.08 (d, J = 1.8, 2 H); 7.40 (t, J = 1.8, 1 H); 9.77 (t, J = 2.4, 1 H). ¹³C-NMR (75 MHz, CDCl₃): 31.5; 34.9; 51.3; 121.7; 124.0; 124.4; 131.2; 151.9; 200.3. EI-MS: 232.2 $(M^+), 217.2$ $([M - Me]^+), 203.2$ $([M - CHO]^+).$

Compound 23 (for nomenclature and full characterization, see [4]). To resorcinol (2.47 g, 22.5 mmol) and 22 (5.20 g, 22.4 mmol) in EtOH (50 ml) at 0° under N₂, conc. HCl (40 ml) was added dropwise over 30 min. The soln. was stirred at 60 \degree for 5 d, then poured into H₂O (1500 ml). After stirring for 2 h at r.t, the precipitate formed was collected by filtration and recrystallized (MeCN) to give 23 (2.57 g, 35%). Pale-brown solid.

Compound 20 (for nomenclature and full characterization including X-ray structure analysis (Fig. 6), see [4]). A soln. of 22 (0.56 g, 0.43 mmol), 2,3-dichloroquinoxaline (0.39 g, 1.96 mmol), and Cs₂CO₃ (1.18 g, 3.62 mmol) in anh. DMF (60 ml) was stirred under N₂ for 2 d at 60°. After cooling, CH₂Cl₂ (400 ml) was added. Washing with H₂O, drying (Na₂SO₄), and evaporation provided a solid that was purified by FC (SiO₂; CH₂Cl₂ MeOH 99.5 : 0.5) to give 20 (0.53 g, 68%). Off-white solid.

Tetramethyl ,4",4"'-(4,6,10,12,16,18,22,24-Octahydroxypentacyclo[19.3.1.1^{3,7}.1^{9,13}.1^{15,19}]octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecaene-2,8,14,20-tetrayl)tetrabutanoate (26). Pd/C (10%) (2.9 g) was flushed with H_2 , freshly distilled THF (900 ml) was added, and the soln. was reflushed with H_2 . 2,6-Dimethylpyridine (21.2 g, 198 mmol) and glutaric acid monomethyl ester chloride (29.8 g, 181 mmol) were added, and the soln. was stirred at r.t. under H_2 for 24 h. Filtration through Celite and evaporation under reduced pressure left a residue that was taken up in CH₂Cl₂ (500 ml). Washing with H₂O (300 ml), 1M HCl (300 ml), and H2O (300 ml) and evaporation under reduced pressure provided 25 (25.3g). Colorless oil. ¹ H-NMR (300 MHz, $CDC₁₃$: 1.80 – 2.30 (m, 2 H); 2.38 (t, J = 7.5, 2 H); 2.49 – 2.60 (m, 2 H); 3.68 (s, 3 H); 9.79 (t, J = 1.2, 1 H). To 25 $(25.3 g)$ and resorcinol $(19.9 g, 181 mmol)$ in MeOH $(300 ml)$ at 0° , conc. HCl $(5 ml)$ was added over 30 min, and the soln. was stirred under Ar at r.t. for 2 h, then at 60 \degree for 2 d. The soln. was poured into H₂O (1500 ml), and the resulting cream-colored precipitate was collected by filtration and recrystallized (MeCN) to give 26 (17.59 g, 44%). White solid. M.p. 205 – 210°. UV/VIS (MeOH): 286 (17300). ¹H-NMR (300 MHz, CD₃OD): 1.58 (*quint*., $J = 7.5, 8 \text{ H}$); 2.25 (q, $J = 7.8, 8 \text{ H}$); 2.42 (t, $J = 7.4, 8 \text{ H}$); 3.66 (s, 12 H); 4.31 (t, $J = 7.9, 4 \text{ H}$); 6.23 (s, 4 H); 7.24 (s, 4 H). ¹³C-NMR (75 MHz, CD₃OD): 24.7; 34.1; 34.6; 34.8; 52.1; 104.1; 125.3; 153.2; 176.0. HR-MALDI-MS (DHB): 911.3460 $([M + Na]^+, C_{48}H_{56}NaO_{16}^+$; calc.: 911.3461). Anal. calc. for $(C_{48}H_{56}O_{16})_2 \cdot H_2O \cdot MeCN$ (1836.965): C 64.08, H 6.42 N 0.76; found: C 63.7, H 6.35, N 0.74.

2,3 : 2',3': 2'',3'': 2''',3'''-{2-endo,8-endo,14-endo,20-endo-Tetrakis[3-(methoxycarbonyl)propyl]pentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecaene-4,24 : 6,10 : 12,16 : 18,22 octayloctaoxy}tetraquinoxaline (24). A soln. of 2,3-dichloroquinoxaline (1.51 g, 7.57 mmol), 26 (1.50 g, 1.69 mmol), and Cs_2CO_3 (4.50 g, 13.8 mmol) in anh. DMF (250 ml) was stirred under Ar at 60 $^{\circ}$ for 2 d. The mixture was poured into dilute aq. AcOH soln., and the resulting precipitate was collected by filtration. Recrystallization (MeCN) gave 24 (0.305 g, 13%). Colorless solid. M.p. $>$ 250°. UV/VIS (CHCl₃): 315 (36500), 328 (32000). ¹H-NMR (300 MHz, CDCl₃): 1.68 – 1.82 (*m*, 8 H); 2.34 – 2.46 (*m*, 8 H); 2.54 (*t*, *J* = 7.3, 8 H); 3.74 (*s*, 12 H); 5.65 (t, J = 8.0, 4 H); 7.34 (s, 4 H); 7.44 – 7.51 (m, 8 H); 7.77 – 7.83 (m, 8 H); 8.19 (s, 4 H). ¹³C-NMR

(75 MHz, CDCl₃): 23.5; 31.7; 33.7; 34.4; 51.7; 119.0; 123.8; 127.9; 129.1; 135.7; 139.8; 152.6; 152.7; 174.1. HR-MALDI-MS (DHB): 1415.4494 ($[M + Na]^+, C_{80}H_{64}N_8NaO_{16}^+$; calc.: 1415.4338). X-Ray: see Fig. 7.

2,8,14,20-Tetrakis(dec-9-enyl)pentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26), 21,23-dodecaene-4,6,10,12,16,18,22,24-octol (30). To resorcinol (11.2 g, 0.1 mol) and 29 (17.7 g, 0.1 mol) in EtOH (100 ml), conc. HCl (16 ml) was added dropwise over 30 min at 0° under Ar. After stirring for 25 h at r.t., the mixture was poured into H₂O (300 ml). The precipitate formed was isolated by filtration, triturated with H₂O, and dried under vacuum at 70° for 20 h to give 30 (24.3 g, 93%). Orange-colored solid. $R_f = (SiO_2; CHCl_3/I)$ MeOH 5 : 1) 0.60; R_f (SiO₂; CH₂Cl₂/MeOH 10 : 1) 0.42. M.p. > 250° (EtOH). IR (KBr): 3316, 2924, 2866, 1639, 1617, 1504, 1461, 1436, 1367, 1344, 1300, 1267, 1194, 1166, 1150, 1083, 989, 907, 848, 828, 722, 628, 611, 556, 512. $1 H\text{-NMR } ((CD_3)_2 CO, 200 \text{ MHz})$: 1.20 – 1.70 (m, 56 H); 2.28 (m, 8 H); 4.30 (t, J = 7.9, 4 H), 4.93 (m, 8 H); 5.82 $(m, 4 H)$; 6.25 (s, 4 H); 7.55 (s, 4 H); 8.50 (br. s, 8 H). FAB-MS: 1040.6 (M^{+}). HR-MALDI-MS: 1063.6995 $([M + Na]^+, C_{68}H_{96}NaO_8^+;$ calc.: 1063.7003).

2,3 : 2',3': 2'',3'': 2''',3''': 2''',3'''-[2-endo,8-endo,14-endo,20-endo-Tetrakis(dec-9-enyl)pentacyclo[19.3.1.13,7.19,13.1^{15,19}]octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecaene-4,24 : 6,10 : 12,16 : 18,22-octayloctaoxy}tetraquinoxaline (31). A soln of 30 (2.08 g, 2.0 mmol), 2,3-dichloroquinoxaline (1.66 g, 8.0 mmol), and Cs,CO₃ (2.90 g, 8.8 mmol) in dry Me₂SO (70 ml) was stirred under Ar at r.t. for 2 d. The mixture was poured into icewater, and the brownish precipitate formed was isolated by filtration. The filtrate was extracted with CH₂Cl₂, and the org. layer was washed with H₂O and evaporated to provide additional solid crude product that was combined with the first precipitate. FC (SiO₂ (150 g); CH₂Cl₂/AcOEt $98:2 \rightarrow 90:10$) afforded 31 (1.285 g, 44%). Colorless flakes. R_f (SiO₂; CH₂Cl₂) 0.23; $R_f = (SiO_2; CH_2Cl_2/ACOEt 20:1)$ 0.66. M.p. > 250° (CH₂Cl₂/ Me2CO). IR (KBr): 3066, 2925, 2852, 1711, 1639, 1606, 1570, 1482, 1416, 1400, 1361, 1265, 1222, 1160, 1117, 1061, 1017, 994, 950, 911, 896, 759, 722, 606, 583, 522, 461. ¹H-NMR (CDCl₃, 200 MHz): 1.20 – 1.50 (m, 48 H); 1.99 – $2.09(m, 8\text{ H}); 2.24(m, 8\text{ H}); 4.95(m, 8\text{ H}); 5.53(t, J = 8.2, 4\text{ H}); 5.81(m, 4\text{ H}); 7.18(s, 4\text{ H}); 7.40 - 7.49(m, 8\text{ H});$ 7.72 - 7.81 (m, 8 H); 8.12 (s, 4 H). ¹³C-NMR (CDCl₃, 75 MHz): 27.8; 28.9; 29.0; 29.4; 29.5; 32.3; 33.7; 34.1; 114.2; 118.7; 123.4; 127.8; 129.8; 135.8; 139.3; 139.7; 152.5; 152.6. FAB-MS: 1546 (MH). HR-MALDI-MS: 1567.7950 $([M+Na]^+, C_{100}H_{104}N_8NaO_8^*;$ calc.: 1567.7875), 1545.8168 $(MH^+, C_{100}H_{105}N_8O_8^*;$ calc.: 1545.8055). Anal. calc. for $C_{100}H_{104}N_8O_8$ · AcOEt (1634.05): C 76.44, H 6.91, N 6.86; found: C 76.15, H 6.82, N 6.78.

2,3 : 2',3': 2'',3'': 2''',3'''-{2-endo,8-endo,14-endo,20-endo-Tetrakis[10-(decylsulfanyl)delcyl]pentacyclo-[19.3.1.13,7.19,13.115,19]octacosa-1(25),3,5,7(28),9,11,13(27),15,17,19(26),21,23-dodecaene-4,24 : 6,10 : 12,16 : 18,22 octayloctaoxy}tetraquinoxaline (27). To 27 (474 mg, 0.33 mmol) in freshly distilled THF (20 ml), decane-1-thiol (0.7 ml, 3.3 mmol) was added, and the mixture was stirred under Ar at 0° for 1 h. After addition of 9-BBN (0.5 M in THF, 33 ml, 16.5 mmol), the mixture was stirred under Ar for 2 d at r.t., then poured into $H₂O(200 ml)$, and extracted with CH₂Cl₂ (200 ml). Washing with H₂O (2 \times 200 ml), drying (MgSO₄), evaporation, and FC (SiO₂) (50 g) ; CH₂Cl₂/AcOEt 99 : 1 \rightarrow 50 : 50) gave 27 (543 mg, 0.242 mmol, 74%). Colorless powder. R_f (SiO₂; CH₂Cl₂) 0.25 . M.p. $53-55^{\circ}$ (CH₂Cl₂/Me₂CO). IR (KBr): 2924, 2851, 1482, 1417, 1336, 1266, 1160, 897, 758, 607. ¹H-NMR $(CDCl₃, 200 MHz)$: 0.86 $(t, J = 6.6, 12 H)$; 1.20 – 1.70 $(m, 128 H)$; 2.22 $(m, 8 H)$; 2.48 $(m, 16 H)$; 5.54 $(t, J = 8.2,$ 4 H); 7.18 (s, 4 H); 7.40 - 7.49 (m, 8 H); 7.73 - 7.81 (m, 8 H); 8.13 (s, 4 H). ¹³C-NMR (CDCl₃, 75 MHz): 14.0; 22.6; 27.8; 28.9 - 29.7 (15 x); 31.8; 32.1; 34.1; 118.8; 123.4; 127.8; 129.0; 135.8; 139.7; 152.5; 152.6. MALDI-MS: 2242.5 $(MH^+, C_{140}H_{193}N_8O_8S_4^*$; calc.: 2242.3823), 2264.5 $([M + Na]^+, C_{140}H_{192}N_8NaO_8S_4^*$; calc.: 2264.3643); 2281.4 $([M + K]^+, C_{140}H_{192}KN_8O_8S_4^+$; calc.: 2280.3382). Anal. calc. for $C_{140}H_{192}N_8O_8S_4$ (2243.34): C 74.96, H 8.63, N 4.99; found: C 74.85, H 8.41, N 5.01.

6-(Pentylsulfanyl)hexan-1-ol (33). To hex-6-en-1-ol (1.22 ml, 1.0 g, 10 mmol) in freshly distilled THF (20 ml) , 9-BBN $(0.5 \text{M}$ in THF, 100 ml, 50 mmol) was added at 0 $^{\circ}$ under N₂. Pentane-1-thiol (1.28 ml, 1.24 g, 10 mmol) was added at 0° , and the mixture was stirred for 3 h at r.t. The mixture was poured into sat. aq. NaCl soln. (100 ml) and extracted with CH_2Cl_2 (3 \times 100 ml). Drying (MgSO₄), evaporation, and FC (SiO₂; CH₂Cl₂/ AcOEt 5:2) provided 33 (2.2 g, 99%). Colorless oil. $R_f = (SiO_2; hexane/ACOE12:1)$ 0.35 – 0.38. IR (neat): 3356, 2922, 2856, 1461, 1378, 1300, 1267, 1217, 1056, 895, 728. ¹H-NMR (CDCl₃, 300 MHz): 0.87 (*t, J* = 7.2, 3 H); 1.20– 1.64 (*m*, 14 H); 2.47 (*t*, *J* = 7.5, 2 H); 2.49 (*t*, *J* = 7.5, 2 H); 3.62 (br. *m*, 2 H). ¹³C-NMR (CDCl₃, 75 MHz): 13.8; 22.2 ; 25.3 ; 28.6 ; 29.3 ; 29.5 ; 31.0 ; 32.0 ; 32.1 ; 32.5 ; 62.9 . EI-MS: 204 (M^{+}), 157 ($[M - Mes]^{+}$), 143 ($[M - Eis]^{+}$), 131 $([M - BuO]^+)$, 115 $([M - BuS]^+)$. Anal. calc. for $C_{11}H_{24}OS$ (204.3737): C 64.65, H 11.84; found: C 64.59, H 11.83

6-(Pentylsulfanyl)hexanal (32). To a suspension of PCC (1.6 g, 7.5 mmol) and Celite (1.6 g) in freshly distilled CH₂Cl₂ (20 ml), a soln. of 33 (1.02 g, 5 mmol) in freshly distilled CH₂Cl₂ (5 ml) was added dropwise under Ar at r.t. After stirring for 5 h under Ar at r.t., the mixture was filtered through a pad of $SiO₂$, which was subsequently washed with CH₂Cl₂. The combined filtrates were concentrated to yield 32 (313 mg, 31%). Colorless oil. R_f (SiO₂; CH₂Cl₂)0.59. IR (neat): 2929, 2856, 2711, 2357, 2333, 1722, 1458, 1300, 1272, 1217, 1156,

1078. ¹H-NMR (CDCl₃, 300 MHz): 0.87 (t, J = 7.2, 3 H); 1.24 – 1.47 (m, 6 H); 1.50 – 1.69 (m, 6 H); 2.37 – 2.45 (m, 2 H); 2.47 (t, J = 7.2, 2 H); 2.49 (t, J = 7.2, 2 H); 9.75 (t, J = 1.7, 1 H). ¹³C-NMR (CDCl₃, 75 MHz): 13.8; 21.6; 22.2; 28.3; 29.3 (2 x); 31.0; 31.8; 32.1; 43.7; 202.7. EI-MS: 202 (M⁺), 174 ([M - CO]⁺). Anal. calc. for C₁₁H₂₂OS (202.3578): C 65.29, H 10.96; found: C 65.28, H 10.77.

2,8,14,20-Tetrakis[5-(pentylsulfanyl)pentyl]pentacyclo[19.3.1.1^{3,7}19,^{15,19}]octacosa-1(25),3,5,7 (28),9,11,13(27), 15,17,19(26),21,23-dodecaene-4,6,10,12,16,18,22,24-octol (34). To 32 (282 mg, 1.39 mmol) and resorcinol (156 mg, 1.39 mmol) in EtOH (1.4 ml), conc. HCl (0.22 ml) was added dropwise over 30 min at 0° under N₂. The mixture was stirred at r.t. for 1 h and at 60° for 24 h, then it was poured into ice-water. The formed precipitate was isolated by filtration and dried under vacuum for 2 d to give 34 (412 mg, 99%). Colorless powder. M.p. 250 (EtOH). IR (KBr): 3254, 2927, 2856, 1618, 1500, 1450, 1367, 1328, 1294, 1256, 1211, 1167, 1089, 900, 833. ¹H-NMR ((CD₃)₂CO, 300 MHz): 0.89 (t, J = 7.1, 12 H); 1.22 – 1.42 (m, 24 H); 1.42 – 1.64 (m, 24 H); 2.27 – 2.35 (m, 8 H); 2.50 (t, J = 7.3, 16 H); 4.30 (t, J = 7.8, 4 H); 6.24 (s, 4 H); 7.55 (s, 4 H); 8.48 (s, 8 H). 13C-NMR ((CD3)2CO, 50 MHz): 14.3; 22.9; 29.6; 30.1; 30.4; 30.8; 31.8; 32.5; 32.6; 34.2; 34.3; 103.7; 125.3; 125.5; 152.8. HR-MALDI-MS: 1199.6497 ($[M + Na]^+$, $C_{68}H_{104}NaO_8S_4^+$; calc.: 1199.6512).

2,3 : 2',3': 2'',3'': 2''',3'''-{2-endo,8-endo,14-endo,20-endo-tetrakis[5-(pentylthio)pentyl]pentacyclo[19.3.1.1^{3,7}. $1^{9,13}.1^{15,19} / octacos a-1(25), 3, 5, 7(28), 9, 11, 13(27), 15, 17, 19(26), 21, 23- dodecaene-4, 24: 6, 10: 12, 16: 18, 22-octayloc-16, 22, 23, 24, 25, 26, 27, 28, 29, 20, 21, 22, 23, 24, 25, 27, 28, 29, 20, 21, 22, 23, 24, 25, 27, 28, 29,$ $taoxy/tetraquinoxalien$ (28). A soln. of 34 (133 mg, 0.113 mmol), 2,3-dichloroquinoxaline (94 mg, 0.45 mmol), and Cs_2CO_3 (163 mg, 0.50 mmol) in dry Me₂SO (5 ml) was stirred at r.t. under Ar for 4 d. The mixture was poured into ice-water, and the precipitate formed was isolated by filtration, triturated with H₂O, and then dissolved in $Me₂CO/CH₂Cl₂$. The soln. was dried (MgSO₄) and concentrated to give a dark-brown solid that was purified by FC (SiO₂; CH₂Cl₂/AcOEt 98 : $2 \rightarrow 80$: 20) to give **28** (99 mg, 52%). Colorless flakes. M.p. 227 – 230[°] (EtOH). IR (KBr): 3067, 2926, 2856, 1606, 1572, 1483, 1467, 1417, 1400, 1361, 1336, 1265, 1233, 1222, 1160, 1117, $1072, 1044, 1011, 950, 906, 896, 867, 757, 722, 606, 583.$ $H\text{-NMR (CDCl}_3, 200 \text{ MHz}): 0.89 \ (t, J = 7.1, 12 \text{ H}); 1.28 1.50 \ (m, 24 \ H); 1.50-1.75 \ (m, 24 \ H); 2.27 \ (m, 8 \ H); 2.52 \ (t, J = 7.3, 8 \ H); 2.55 \ (m, 8 \ H); 5.59 \ (t, J = 8.1, 4 \ H); 7.18$ $(s, 4H); 7.41 - 7.50$ $(m, 8H); 7.71 - 7.80$ $(m, 8H); 8.16$ $(s, 4H).$ ¹³C-NMR (CDCl₃, 50 MHz): 13.9; 22.2; 27.5; 28.7; 29.4; 29.6; 31.1; 32.1; 32.2 (2); 34.0; 118.9; 123.3; 127.8; 129.0; 135.7; 139.7; 152.5; 152.6. HR-MALDI-MS: 1703.7388 ([$M + Na$]⁺, C₁₀₀H₁₁₂N₈NaO₈S₄⁺; calc.: 1703.7384), 1681.7578 (M H⁺, C₁₀₀H₁₁₃N₈O₈S₄⁺; calc.: 1681.7656). Anal. calc. for C₁₀₀H₁₁₂N₈O₈S₄ (1682.2724): C 71.40, H 6.71, N 6.66; found: C 71.50, H 7.02, N 6.86.

X-Ray Crystal Structure of 1c. Crystal data at 233 K for $C_{44}H_{56}O_8 \cdot 2(MeOH) \cdot MeCH_2OH$ (M_r823.04): monoclinic, space group C_2/c (No. 15), $D_c = 1.207$ g/cm³, $Z = 8$, $a = 36.049(7)$, $b = 11.564(2)$, $c = 21.773(5)$ Å, $\beta = 93.71(2)^\circ$, $V = 9058(3)$ Å³, *Nonius CAD4* diffractometer, Cu K_a radiation, $\lambda = 1.5418$ Å. A crystal, obtained by slow cooling of a MeOH/EtOH soln. (linear dimensions ca. $0.2 \times 0.18 \times 0.16$ mm) was mounted at low temp. to prevent evaporation of enclosed solvent. The structure was solved by direct methods (SIR97) [27] and refined by full-matrix least-squares analysis (SHELXL-97) [28], by using an isotropic extinction correction, and $w = 1/2$ $[\sigma 2(F_0^2) + (0.0933P)^2 + 49.1608P]$, where $P = (F_0^2 + 2F_0^2)/3$. The subunit C(10)–C(13) and one MeOH are disordered over two orientations. For $C(11)$, $C(12)$, $C(13)$, and $O(200)$, two sets of atomic parameters were refined with population parameters of 0.7 and 0.3 , resp. In Fig. 2, only one orientation is shown for clarity. All heavy atoms were refined anisotropically (H-atoms of the ordered structure isotropically, whereby H-positions are based on stereochemical considerations). Final $R(F) = 0.084$, w $R(F^2) = 0.241$ for 626 parameters and 5047 reflections with $I > 2\sigma$ (*I*) and 2.46 $< \theta < 56.96^{\circ}$ (corresponding *R* values based on all 6098 reflections are 0.098 and 0.252 resp.). CCDC-214738.

X-Ray Crystal Structure of 2b. Crystal data at 293 K for $C_{80}H_{72}N_8O_8 \cdot CH_2Cl_2 \cdot 2$ MeCN (M_r 1440.51): monoclinic, space group C2/c (No. 15), $D_c = 1.224$ g/cm³, Z = 4, a = 19.007(14), b = 17.623(13), c = 24.57(2) Å, $\beta = 109.63(6)$ °, $V = 7752(11)$ Å³; Picker-Stoe diffractometer, Cu K_a radiation, $\lambda = 1.5418$ Å. Prismatic crystals (linear dimensions ca. $0.15 \times 0.1 \times 0.1$ mm) were obtained by slow evaporation from MeCN/CH₂Cl₂. The structure was solved by direct methods (SHELXS-86) [29] and refined by full-matrix least-squares analysis (SHELXL-93) [30]. The subunit $C(35) - C(36)$ and both MeCN molecules are disordered over two orientations. In Fig. 3, only one orientation is shown for clarity. All heavy atoms were refined anisotropically, H-atoms were fixed isotropically with atomic positions based on stereochemical considerations. Final $R(F)$ 0.0602, $wR(F^2) = 0.1681$ for 511 parameters and 3228 reflections with $I > 2\sigma(I)$ and 3.52 < θ < 49.98°. CCDC-214733.

X-Ray Crystal Structure of 11. Crystal data at 295 K for $C_{23}H_{26}BF_2N_3O_2$ (M_r 425.28): triclinic, space group $P\overline{1}$ (No. 2), $D_c = 1.042$ g/cm³, $Z = 6$, $a = 13.9886(4)$, $b = 17.0634(5)$, $c = 18.9111(6)$ Å, $\alpha = 71.360(2)$ °, $\beta =$ 72.540(2)°, $\gamma = 88.770(2)$ °, $V = 4066.3(2)$ Å³; *Bruker-Nonius Kappa-CCD* diffractometer, Mo K_a radiation, $\lambda = 0.7107$ Å. A dark-red crystal (linear dimensions *ca*. $0.3 \times 0.3 \times 0.02$ mm) was obtained by slow evaporation of a CHCl₃ soln. The structure was solved by direct methods (SIR97) [27] and refined by full-matrix least-

squares analysis (SHELXL-97) [28], by using an isotropic extinction correction and $w = 1/[0(1 - \frac{F_0^2}{F_0}) +$ $(0.1974P)^2 + 1.6862P$, where $P = (F_o^2 + 2F_c^2)/3$. All heavy atoms were refined anisotropically (H-atoms isotropically, whereby H-positions are based on stereochemical considerations). Final $R(F) = 0.087$, $wR(F^2) = 0.258$ for 839 parameters and 4959 reflections with $I > 2\sigma (I)$ and $3.13 < \theta < 20.03^{\circ}$ (corresponding R values based on all 7142 reflections are 0.118 and 0.298 resp.). CCDC-214739.

X-Ray Crystal Structure of 19. Crystal data at 253 K for $C_{76}H_{72}N_8O_{24} \cdot 2$ Me₂CO (*M_r* 1597.57): monoclinic, space group $P2_1/m$ (No. 11), $D_c = 1.234$ g/cm³, $Z = 2$, $a = 12.3125(3)$, $b = 27.0211(7)$, $c = 13.1175(4)$ Å, $\beta =$ 99.780 $(1)^\circ$, $V = 4300.7(2)$ Å³; *Bruker-Nonius Kappa-CCD* diffractometer, Mo K_a radiation, $\lambda = 0.7107$ Å. An orange crystal, obtained by evaporation of a Me₂CO soln. (linear dimensions ca. $0.3 \times 0.3 \times 0.28$ mm) was mounted at low temp. in epoxy resin to prevent evaporation of enclosed solvent. The crystals shatter below ca. 230 K. At 253 K, they desintegrate within a few hours. The structure was solved by direct methods (SIR97) [27] and refined by full-matrix least-squares analysis (SHELXL-97) [28], by using an isotropic extinction correction and $w = 1/[\sigma 2(F_0^2) + (0.1188P)^2 + 2.8782P]$, where $P = (F_0^2 + 2F_c^2)/3$. All heavy atoms were refined anisotropically (H-atoms isotropically, whereby H-positions are based on stereochemical considerations). Final $R(F)$ = 0.081, w $R(F^2) = 0.209$ for 568 parameters and 4932 reflections with $I > 2\sigma(I)$ and $1.75 < \theta < 24.11^{\circ}$ (corresponding R values based on all 6523 reflections are 0.104 and 0.231 resp.). CCDC-214740.

X-Ray Crystal Structure of 24. Crystal data at 293 K for $C_{80}H_{64}N_8O_{16}$ MeCN (M_r 1434.46): monoclinic, space group $P2(1)/c$ (No. 14), $D_c = 1.311$ g/cm³, $Z = 4$, $a = 21.08(2)$, $b = 17.07(2)$, $c = 20.99(3)$ Å, $\beta = 104.03(9)^\circ$, $V = 7332(15)$ Å³; Picker-Stoe diffractometer, CuK_a radiation, $\lambda = 1.5418$ Å. Prismatic crystals (linear dimensions $ca. 0.1 \times 0.1 \times 0.07$ mm) were obtained by slow evaporation from MeCN/CHCl₃. The structure was solved by direct methods (SHELXS-86) [29] and refined by full-matrix least-squares analysis (SHELXL-93) [30]. All heavy atoms were refined anisotropically, H-atoms fixed isotropically with atomic positions based on stereochemical considerations. Final $R(F) = 0.1088$, w $R(F2) = 0.2957$ for 977 parameters and 3500 reflections with $I > 2\sigma(I)$ and $2.16 < \theta < 42.50^{\circ}$. CCDC-214734.

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the *Cambridge Crystallographic Data Centre* (*CCDC*). Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: 44(1223) 336 033; email: deposit@ccdc.cam.ac.uk).

REFERENCES

- [1] a) J. R. Moran, S. Karbach, D. J. Cram, J. Am. Chem. Soc. 1982, 104, 5826; b) J. R. Moran, J. L. Ericson, E. Dalcanale, J. A. Bryant, C. B. Knobler, D. J. Cram, J. Am. Chem. Soc. 1991, 113, 5707; c) D. J. Cram, H.-J. Choi, J. A. Bryant, C. B. Knobler, *J. Am. Chem. Soc.* 1992, 114, 7748; d) D. J. Cram, J. M. Cram, `Container Molecules and Their Guests', Royal Society of Chemistry, Cambridge, 1994, p. 107 - 130.
- [2] a) E. Dalcanale, P. Soncini, G. Bacchilega, F. Ugozzoli, J. Chem. Soc., Chem. Commun. 1989, 500; b) P. Soncini, S. Bonsignore, E. Dalcanale, F. Ugozzoli, J. Org. Chem. 1992, 57, 4608.
- [3] a) F. Hof, S. L. Craig, C. Nuckolls, J. Rebek Jr., Angew. Chem. 2002, 114, 1556; Angew. Chem., Int. Ed. 2002, 41, 1488; b) D. M. Rudkevich, G. Hilmersson, J. Rebek Jr., J. Am. Chem. Soc. 1998, 120, 12216; c) A. R. Renslo, F. C. Tucci, D. M. Rudkevich, J. Rebek Jr., J. Am. Chem. Soc. 2000, 122, 4573; d) T. Haino, D. M. Rudkevich, A. Shivanyuk, K. Rissanen, J. Rebek Jr., Chem. - Eur. J. 2000, 6, 3797; e) S. D. Starnes, D. M. Rudkevich, J. Rebek Jr., J. Am. Chem. Soc. 2001, 123, 4659.
- [4] P. J. Skinner, A. G. Cheetham, A. Beeby, V. Gramlich, F. Diederich, Helv. Chim. Acta 2001, 84, 2146.
- [5] Y. Yamakoshi, R. R. Schlittler. J. K. Gimzewski, F. Diederich, J. Mater. Chem. 2001, 11, 2895.
- [6] P. Timmerman, W. Verboom, D. N. Reinhoudt, Tetrahedron 1996, 52, 2663.
- [7] J. Karolin, L. B.-Å. Johansson, L. Strandberg, T. Ny, J. Am. Chem. Soc. 1994, 116, 7801; R. W. Wagner, J. S. Lindsey, Pure Appl. Chem. 1996, 68, 1373; M. Kollmannsberger, T. Garies, S. Heinl, J. Breu, J. Daub, Angew. Chem. 1997, 109 1391; Angew. Chem., Int. Ed. 1997, 36, 1333; A. Burghart, H. Kim, M. B. Welch, L. H. Thoresen, J. Reibenspies, K. Burgess, F. Bergström, L. B.-Å. Johansson, *J. Org. Chem.* 1999, 64, 7813.
- [8] S. Weiss, Science 1999, 283, 1676; B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, D. W. Pohl, J. Chem. Phys. 2000, 112, 7761; W. Trabesinger, A. Renn, B. Hecht, U. P. Wild, A. Montali, P. Smith, C. Weder, J. Phys. Chem. B 2000, 104, 5221.
- V. A. Azov, F. Diederich, Y. Lill, B. Hecht, Helv. Chim. Acta 2003, 86, 2149.
- [10] V. A. Azov, B. M. Jaun, F. Diederich, *Helv. Chim. Acta*, in press.
- [11] a) F. C. Tucci, D. M. Rudkevich, J. Rebek Jr., J. Org. Chem. 1999, 64, 4555; b) A. Shivanyuk, K. Rissanen, S. K. Körner, D. M. Rudkevich, J. Rebek Jr., Helv. Chim. Acta 2000, 83, 1778; c) S. K. Körner, F. C. Tucci, D. M. Rudkevich, T. Heinz, J. Rebek Jr., Chem. Eur. J. 2000, 6, 187; d) S. L. Craig, S. Lin, J. Chen, J. Rebek Jr., J. Am. Chem. Soc. 2002, 124, 8780.
- [12] F. C. Tucci, A. R. Renslo, D. M. Rudkevich, J. Rebek Jr., Angew. Chem. 2000, 39, 1118; Angew. Chem., Int. Ed. 2000, 39, 1076; U. Lücking, F. C. Tucci, D. M. Rudkevich, J. Rebek Jr., J. Am. Chem. Soc. 2000, 122, 8880; S. D. Starnes, D. M. Rudkevich, J. Rebek Jr., Org. Lett. 2000, 2, 1995; U. Lücking, J. Chen, D. M. Rudkevich, J. Rebek Jr., J. Am. Chem. Soc. 2001, 123, 9929.
- [13] L. Abis, E. Dalcanale, A. Du Vosel, S. Spera, J. Org. Chem. 1988, 53, 5475.
- [14] L. M. Tunstad, J. A. Tucker, E. Dalcanale, J. Weiser, J. A. Bryant, J. C. Sherman, R. C. Helgeson, C. B. Knobler, D. J. Cram, J. Org. Chem. 1989, 54, 1305; T. Lippmann, H. Wilde, M. Pink, A. Schäfer, M. Hesse, G. Mann, Angew. Chem. 1993, 105, 1258; Angew. Chem., Int. Ed. 1993, 32, 1195; D. E. Hibbs, M. B. Hursthouse, K. M. Abdul Malik, H. Adams, C. J. M. Stirling, F. Davis, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998, 987; K. Murayama, K. Aoki, Chem. Commun. 1998, 607; L. R. MacGillivray, J. L. Atwood, Chem. Commun. 1999, 181; H. Mansikkamäki, M. Nissinen, K. Rissanen, Chem. Commun. 2002, 1902.
- [15] M. Vincenti, E. Dalcanale, P. Soncini, G. Guglielmetti, J. Am. Chem. Soc. 1990, 112, 445.
- [16] D. J. Cram, L. M. Tunstad, C. B. Knobler, J. Org. Chem. 1992, 57, 528.
- [17] M. He, R. J. Johnson, J. O. Escobedo, P. A. Beck, K. K. Kim, N. N. St. Luce, C. J. Davis, P. T. Lewis, F. R. Fronczek, B. J. Melancon, A. A. Mrse, W. D. Treleaven, R. M. Strongin, J. Am. Chem. Soc. 2002, 124, 5000.
- [18] B. C. Gibb, R. G. Chapman, J. C. Sherman, J. Org. Chem. 1996, 61, 1505.
- [19] A. R. Far, Y. L. Cho, A. Rang, D. M. Rudkevich, J. Rebek Jr., Tetrahedron 2002, 58, 741.
- [20] L. Pirondini, D. Bonifazi, E. Menozzi, E. Wegelius, K. Rissanen, C. Massera, E. Dalcanale, Eur. J. Org. Chem. 2001, 2311.
- [21] T. A. Jung, R. R. Schlittler, J. K. Gimzewski, H. Tang, C. Joachim, Science 1996, 271, 181; J. K. Gimzewski, C. Joachim, R. R. Schlittler, V. Langlais, H. Tang, I. Johannsen, Science 1998, 281, 531.
- [22] M. Yoshifuji, K. Shimura, K. Toyota, Bull. Chem. Soc. Jpn. 1994, 67, 1980.
- [23] A. Ulman, Chem. Rev. 1996, 96, 1533; C. D. Bain, E. B. Throughton, Y.-T. Tao, J. Evall, G. M. Whitesides, R. G. Nuzzo, J. Am. Chem. Soc. 1989, 111, 321.
- [24] H. Schönherr, M. W. J. Beulen, J. Bügler, J. Huskens, F. C. J. M. van Veggel, D. N. Reinhoudt, G. J. Vansco, J. Am. Chem. Soc. 2000, 122, 4963, and refs cit. therein.
- [25] H. G. Aurich, E. Deuschle Liebigs Ann. Chem. 1981, 719.
- [26] M. G. J. Beets, W. Meerburg, H. van Essen, Recl. Trav. Chim. Pays-Bas 1959, 570.
- [27] A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115.
- [28] G. M. Sheldrick, 'SHELXL-97 Program for the Refinement of Crystal Structures', University of Göttingen, Germany, 1997.
- [29] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467.
- [30] G. M. Sheldrick, 'SHELXL-93 Program for the Refinement of Crystal Structures', University of Göttingen, Germany, 1993.

Received July 21, 2003